The Nucleophilic Reactivity of Alkylidene Derivatives of Cyclic Keto-methylene Compounds.

By Edward B. Knott.

[Reprint Order No. 4786.]
3-Substituted rhodanines have been condensed with acetaldehyde, crotonaldehyde, acetone, diacetyl, and pyruvic acid, to give 4 -alkylidene derivatives. These and the 1 '-alkoxy- and 1 '-alkylthio-ethylidene derivatives of a number of cyclic keto-methylene compounds have been condensed with electrophilic, cyclic quaternary ammonium salts to give simple and complex merocyanines and oxamines. Some of the complex dyes have their main absorption band almost completely in the infra-red region, a phenomenon which is believed to be unique for non-ionic dyes.

The nucleophilic reactivity of the methylene carbon atom in cyclic keto-methylene compounds is shown by the formation of condensation products with aldehydes (Nencki, Ber., 1884, 17, 2277), ketones (Knorr, Annalen, 1887, 238, 180), and ortho-esters (preceding paper). It is also utilized in the preparation of merocyanines (II) by treating the ketomethylene compound with derivatives of heterocyclic quaternary ammonium compounds (I) containing an electrophilic carbon atom. This method is usually employed in the preparation of merocyanines and higher vinylogues (II; $\mathrm{R}^{\prime}=\mathrm{H}$). It is also used for dimethinmerocyanines carrying a chain substituent (II; $\mathrm{R}^{\prime} \neq \mathrm{H}$) although the preparation of the intermediate ($\mathrm{I} ; \mathrm{R}^{\prime} \neq \mathrm{H}$) usually involves a number of steps (cf. Brooker, Keyes, Sprague, Van Dyke, Van Lare, Van Zandt, and White, J. Amer. Chem. Soc., 1951, 73,
5326). In all cases the preparation of ($\mathrm{I} ; n>0$) requires, as intermediate, the reactive methyl derivative of the quaternary salt ($\mathrm{I} ; n=0, \mathrm{G}=\mathrm{Me}$) and in certain cases such derivatives are not readily accessible.

The discovery by Kendall and his co-workers, that the terminal methyl group of alkylidene derivatives (III; $\mathrm{R}^{\prime \prime}=\mathrm{H}$, alkyl, or aryl) of pyrazolones, rhodanines, or 2-thiohydantoins (with Collins, B.P. $528,803 / 1939$) or of 1^{\prime}-alkoxyethylidene derivatives (III; $m=0, \mathrm{R}^{\prime \prime}=\mathrm{OEt}$) of pyrazolones (with Fry and Morgan, B.P. 672,291/1950) still showed the same nucleophilic reactivity associated with the original methylene carbon atom, established a novel method of preparing di- or tetra-methinmerocyanines (IV) with or without chain substituents.

Apart from the examples given in the above patents this reaction has not been exploited and the purpose of the present paper is to extend its scope and, in particular, to apply it to the synthesis of complex di- and tetra-methinmerocyanines not hitherto accessible.

5-Alkylidenerhodanines.-5-Ethylidene- and 5-but-2'-en-1'-ylidene-rhodanine have been prepared by heating rhodanine and paraldehyde or crotonaldehyde in acetic acid (Andreasch, Monatsh., 1918, 39, 423; Gränacher, Gerö, Ofner, Kloppenstein, and Schlatter, Helv. Chim. Acta, 1923, 6, 458). It has now been found that acetaldehyde or crotonaldehyde readily condensed with 3 -substituted rhodanines in acetic anhydridesodium acetate, to give the ethylidene and butenylidene derivatives.

The condensation of acetone and pyrazolones occurs under reflux (Knorr, loc. cit.). On the other hand, rhodanine requires as catalyst either sodium acetate in acetic acid (Culvenor, Davies, Maclaren, Nelson, and Savige, J., 1949, 2573) or ammonia and ammonium chloride (Brown, Bradshaw, McCallum, and Potter, J. Org. Chem., 1950, 15, 174; see also Allan, Maclean, and Newbold, J., 1952, 5053). Cook and Cox (J., 1949, 2343) used pyridine and morpholine for the condensation with 1:3-disubstituted 2-thiohydantoin. The 3 -substituted rhodanines, it has now been found, condense best with acetone in the presence of zinc chloride.

Zinc chloride is also effective in the condensation of 3 -substituted rhodanines with diacetyl, to give the 5 -(3-oxobutan-2-ylidene) derivative (V; i.e., III, $m=0, \mathrm{R}^{\prime \prime}=\mathrm{Ac}$), and with pyruvic acid to give $5-1^{\prime}$-alkoxycarbonylethylidene derivatives (VI), esterification accompanying condensation in alcohol. Both (V) and (VI) are strong photographic desensitizers. This was expected (cf. Kendall, Int. Congr. Photography, Paris, 1935) since both compounds contain the system of two $+M$ atoms connected by a conjugated chain of an even number of carbon atoms. Only one of the two possible geometrical isomers of each of these compounds was isolated and from steric considerations this is assumed to be the one with the configuration shown.

Simple meroCyanines and Vinylogues.-All the above compounds contain a nucleophilic methyl group and can be condensed with suitable intermediates to give vinylogues of merocyanines. The photographic desensitizing properties of (V) and (VI) are considerably enhanced in the dyes derived from them, possibly as a result of the stronger adsorption of the latter on the silver halide grains.

The l^{\prime}-alkoxy-, 1 '-alkylthio-, and 1 '-arylthio-ethylidene derivatives described in the previous paper may also be condensed with 2 -alkylthio-derivatives of cyclic ammonium
salts ($\mathrm{I} ; n=0, \mathrm{G}=\mathrm{SR}$) (cf. Kendal, Fry, and Morgan, loc. cit.), to give dimethinmerocyanines containing a chain alkoxy- or alkyl(aryl)thio-group (IV; $n=m=0, \mathrm{R}^{\prime \prime}=\mathrm{RO}$ or RS). Other dyes of the type (IV; $n=m=0, \mathrm{R}^{\prime \prime}=\mathrm{SR}$) have also been obtained by Edwards and Kendall (U.S.P. 2,531,913) by a different method. One of these dyes, 3-ethoxycarbonylmethyl-5-[1-ethylthio-2-(3-methylthiazolidin-2-ylidene)ethylidene]-2-thio-thiazolid-4-one was isolated in three crystalline forms, each of different melting point, but having the same absorption and photographic sensitization characteristics. The form first obtained consisted of well-defined crystals, m. p. 139-143 ${ }^{\circ}$, which on further recrystallization separated into two forms, m. p. $152-154^{\circ}$ and 131° respectively.

In general the replacement of $\mathrm{R}^{\prime}=\mathrm{H}$ by $\mathrm{R}^{\prime}=\mathrm{OEt}$ in (II) results in a hypsochromic absorption shift, whilst replacement by $\mathrm{R}^{\prime}=\mathrm{SR}$ always gives a strong bathochromic shift.

Dimethinmerocyanines substituted by alkoxyl in the chain, derived from rhodanines, are rapidly hydrolysed by strong alkali to the alkali-soluble ketones (VII).

Condensation of (III; $m=0, \mathrm{R}^{\prime \prime}=\mathrm{OR}$ or SR) with 2-2'-acetanilidovinyl derivatives ($\mathrm{I} ; n=\mathrm{I}, \mathrm{G}=\mathrm{NAcPh}$) proceeds smoothly, to give higher vinylogues of the above dyes (IV; $\mathrm{R}^{\prime \prime}=\mathrm{OR}, \mathrm{SR}, m=0, n=1$).

Complex meroCyanines.-The formation of complex merocyanines by reaction of a ketomethylene compound with a quaternized merocyanine (VIII; $\mathrm{X} \neq \mathrm{Y}=\mathrm{NR}$ or S) derived from a rhodanine or 3 -alkyl-2-thiothiazolid-5-one is well known (Kendall, B.P. 487,051; Brooker, in Mees, "The Theory of the Photographic Process," Macmillan, New York, 1942, p. 1038; Knott and Jeffreys, J., 1952, 4762). Such dyes are all characterized by ketonic nuclei attached directly to each other as in simple merocyanines, i.e., $: \mathrm{CH} \cdot[\mathrm{CH}: \mathrm{CH}]_{m} \cdot \mathrm{CR}^{\prime \prime}$: of (IX) is absent. In order to obtain higher vinylogues (IX; $\mathrm{R}^{\prime \prime}=\mathrm{H}$) Brooker (personal communication) first converted the SMe group of (VIII) into Me , and brought about the reaction of the product with diphenylformamidine, to give the

intermediate analogous to (I). Condensation of (VIII) with (III) which proceeds smoothly offers, however, a much more convenient method, in certain cases, of preparing (IX; $\mathrm{R}^{\prime \prime}=\mathrm{H}$) and allows the ready synthesis of chain-substituted analogues ($\mathrm{IX} ; \mathrm{R}^{\prime \prime}=\mathrm{Me}$, $\mathrm{OR}, \mathrm{SR}, \mathrm{Ac}$, or $\left.\mathrm{CO}_{2} \mathrm{R}\right)$. Such dyes, in which $m=0$ and $\mathrm{R}^{\prime \prime}=\mathrm{OR}$ or SR , are of particular

Required（\％）

1
 は1 1 $\underset{\sim}{\infty}$
 Found（\％） （əW $=\mathrm{H}: \mathbf{I}=$ $\begin{array}{cc}=1 ; & \mathrm{R}=\mathrm{Me}) \\ 7.7 & 17.9 \\ 7.6 & -\end{array}$ $\left|\begin{array}{l}10 \\ 0 \\ 0\end{array}\right|$ 1 ，
 ๙ึ
 $\stackrel{\sim}{2}$ 11
 11 $28 \cdot 6$
$19 \cdot 7$ $1 \stackrel{20}{9}$ 020 1 $\left\lvert\, \begin{aligned} & 10 \\ & \varrho \\ & 0 \\ & 0\end{aligned}\right.$
 ジ心

$$
\begin{gathered}
260 \\
\text { ylidene) }
\end{gathered}
$$ $-3-R-$

644
643
650 650
691 691
690 690
676 675
676 303° 303
235
231 $\begin{array}{llll}\text { Brilliant green } & 231 & 650 & \mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{~N}_{3} \mathrm{~S}_{3} \\ \text { Green needles } & 241 & 650 & \mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~N}_{3} \mathrm{~S}_{3} \\ \text { Green tablets } & 257 & 691 & \mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~S}_{4} \\ \text { Gold－green } & 238 & 690 & \mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~S}_{4} \\ \text { Dark green } & 241 & 676 & \mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~S}_{4}\end{array}$ $\begin{array}{ll} & 257 \\ \text { Green needles } & 238 \\ \text { Green tablets } & 238 \\ \text { Gold－green } & 241\end{array}$ Gold－green
Dark green Bronze Green needles
Green－bronze threads Brassy－green
Green needles Green threads
Green needles Golden threads
 10 720

ene］－4－（A－2－ylide
Green needles Brilliant green
 $\begin{array}{llll}\text { Bronze } & 240 & 675 & \mathrm{C}_{27} \mathrm{H}_{27} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~S}_{4}\end{array}$

$$
\begin{array}{ll}
\text { Golden threads } & 264 \\
\text { Green needles } & 244
\end{array}
$$

$$
\begin{array}{ccc}
37 & \text { Green needles } & 244 \\
49 & , & 236
\end{array}
$$

$$
\begin{array}{lll}
45 & & 197 \\
51 & \text { Green "flakes } & 227 \\
38 & \text { Green needles } & 260
\end{array}
$$ $\mathrm{C}_{2}{ }_{5} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~S}_{4}$

$\mathrm{C}_{2} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}_{5}$ $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}_{5}$ $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}_{5}$
$\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}_{5}$ $\mathrm{C}_{3} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~N}_{3} \mathrm{~S}_{3}$
$\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}_{3}$ nem

 ～ic

$$
\begin{aligned}
& \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~S}_{4} \\
& \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}_{5}
\end{aligned}
$$

 $\begin{array}{ll}\text { Green needles } & 233 \\ & 240 \\ & 237\end{array}$

$$
\begin{array}{cc}
\text { Green needles } & 255 \\
\text { ", } & 279 \\
& 252
\end{array}
$$

2 E t	37	Green needles	264	665	$\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~S}_{3}$	$7 \cdot 6$	－	$7 \cdot 75$	－
： CH_{2}	38		275	671	$\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{~N}_{3} \mathrm{~S}_{3}$	$7 \cdot 05$		$7 \cdot 05$	
	54	Green－bronze needles	277	730	$\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{~S}_{4}$	6.95	$20 \cdot 7$	$6 \cdot 85$	$20 \cdot 8$
othiazolidin－5－ylidene）but－2－en－1－ylidene］－4－（A－2－ylidene－ethylidene）－3－methylthiazolid－5－one									
（ $\left.m=1 ; n=2 ; \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}\right)$									
	14	Green needles	275	725	$\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~S}_{3}$	$7 \cdot 55$	17．25	$7 \cdot 55$	$17 \cdot 3$
	21	Green－gold	273	758	$\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}_{4}$	$7 \cdot 25$	$22 \cdot 4$	$7 \cdot 35$	$22 \cdot 4$
	11.5	Bronze flakes	305	755	$\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~S}_{3}$	$6 \cdot 4$	$14 \cdot 3$	$6 \cdot 4$	$14 \cdot 6$
	27	Green flakes	298	780	$\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}_{4}$	$6 \cdot 1$	$19 \cdot 1$	$6 \cdot 25$	$19 \cdot 0$

Me）

＂

$$
\begin{aligned}
& \text { IU } \\
& \underset{2-\left[2-\left(3-\mathrm{R}^{\prime \prime}-4-O x o-2-t h i o t h i a z o l i\right.\right.}{\mathrm{A}}
\end{aligned}
$$

d

OEt \quad＂， ， skt
 owe SEt
＂． $\mathrm{CH}_{2} \mathrm{Ph}$ Allyl＂出
 ＊$\ldots . . \ldots \ldots \ldots \ldots \ldots \ldots$＂．．．．．．．．．．．．．．．．．．．．

$$
\text { "" } \quad \text { "............................. }
$$

$\begin{array}{ll}\text { OEt } & " \\ \text { H } & , "\end{array}$ $\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$ ＂，
＂， SEt OEt
OEt SEt ＂ C
oEt

$$
\ddot{\prime \prime}
$$

\square
 thiazoli －＂
3－Ethylbenzothiazolin

[^0] 3－Ethylbenzoxazolin 3－Ethylbenzothiazolin...................
3－Ethyl－4 ：5－diphenyloxazolin ．．．．．．．．
3－Ethyl－4：5－diphenylthiazolin.....
interest because these chain groups considerably increase the solubility of the dyes, which otherwise are difficultly soluble in common organic solvents. As with the simpler dyes, replacement of $\mathrm{R}^{\prime \prime}=\mathrm{H}$ by $\mathrm{R}^{\prime \prime}=\mathrm{SEt}$ in (IX) causes a strong bathochromic shift.

Similarly, quaternized oxamines (see preceding paper) condensed with (III; $m=0$) to give complex dyes (X). These, like the lower vinylogues (preceding paper) are much lighter in colour than the related complex merocyanines. The details of the complex dyes are given in Tables 1-4.

Even more complex tetranuclear dyes (XI-XIII) have also been synthesized from (IX ; $\mathrm{R}^{\prime \prime}=\mathrm{OEt}$ or SEt ; $m=0$), where the end ketonic nucleus is 3 -ethoxycarbonylmethylrhodanine, by a repetition of the procedure used in making the trinuclear dyes. Dyes (XI) and (XII) are remarkable in showing a lower m. p. than the parent trinuclear dyes, and are soluble in benzene or acetone. Their main absorption band lies almost completely in the infra-red region, a phenomenon which is believed to be unique amongst non-ionic dyes. The degraded blue colour of their solutions is a result of minor absorption bands which appear to be characteristic of these dyes.

Experimental

Determinations of $\lambda_{\text {max. }}$ refer to MeOH solution unless otherwise stated.
3-Ethoxycarbonylmethyl-5-ethylidene-2-thiothiazolid-4-one.-3-Ethoxycarbonylmethylrhodanine (2.2 g.), acetaldehyde ($1 \mathrm{c.c}$.), acetic anhydride (10 c.c.), and anhydrous sodium acetate (1.2 g .) were refluxed for 1 hr . on the steam-bath, with the addition of acetaldehyde ($1 \mathrm{c} . \mathrm{c}$.) every 15 min . Acetic acid (5 c.c.) was added and the mixture poured into water, to give a yellow oil which soon solidified. The product ($2 \cdot 45 \mathrm{~g}$., 100%) formed slender, pale yellow needles, m. p. 69°, from isopropanol (Found : C, $44.3 ; \mathrm{H}, 4.9$; S, $25.9 . \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{NS}_{2}$ requires $\mathrm{C}, 44.05$; H, $4 \cdot 5$; S, $26 \cdot 15 \%$).

3-Allyl-5-ethylidene-2-thiothiazolid-4-one.-3-Allylrhodanine (8.65 g .) anhydrous sodium acetate (6.0 g .), acetic anhydride (50 c.c.), and acetaldehyde (10 c.c.) were heated for 1 hr . in an autoclave in a steam-bath. The mixture was decomposed with dilute acetic acid, and the oil taken up in ether and distilled. The product (6.45 g ., 65%) had b.p. $119-123^{\circ} / 3 \mathrm{~mm}$., and formed yellow needles, m. p. 37°, from isopropanol (Found : S, 32.25. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ONS}_{2}$ requires $\mathrm{S}, \mathbf{3 2 \cdot 2 \%}$).

5-But-2'-en-1'-ylidene-3-ethoxycarbonylmethyl-2-thiothiazolid-4-one.-3-Ethoxycarbonylmethylrhodanine (11.0 g), crotonaldehyde ($9.0 \mathrm{c.c}$.), acetic anhydride ($75 \mathrm{c} . \mathrm{c}$.), and anhydrous sodium acetate (6.0 g .) were refluxed together for 10 min . Most of the solvent was removed under reduced pressure, and the residue was shaken with water (100 c.c.). The product soon solidified, forming orange needles, m. p. $104^{\circ}(6.0 \mathrm{~g} ., 44.5 \%$), from isopropanol (Found : C, $48.85 ; \mathrm{H}, 5.05$; S, $23.4 . \quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{NS}_{2}$ requires $\mathrm{C}, 48.7$; $\left.\mathrm{H}, 4.8 ; \mathrm{S}, 23.6 \%\right)$.

3-Allyl-5-but-2'-en-1'-ylidene-2-thiothiazolid-4-one was obtained similarly in $51-5 \%$ yield as orange-yellow needles, m. p. 92°, from isopropanol. The solutions in the latter solvent should be chilled rapidly to prevent a slight stickiness (Found: C, 53.1; H, 5.0; S, 28.05. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ONS}_{2}$ requires C, $53.3 ; \mathrm{H}, 4 \cdot 9 ; \mathrm{S}, 28.45 \%$).

5-But-2'-en-1'-ylidene-3-ethyl-2-thiothiazolid-4-one formed brown flakes, m. p. 87-88 ${ }^{\circ}$, from isopropanol (63% yield) (Found: C, $51 \cdot 15 ; \mathrm{H}, 5 \cdot 5 ; \mathrm{S}, 29.9 . \quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ONS}_{2}$ requires $\mathrm{C}, 51 \cdot 25$; H, $5 \cdot 2$; S, 30.3%).

3-Ethoxycarbonylmethyl-5-prop-2'-ylidene-2-thiothiazolid-4-one.-3-Ethoxycarbonylmethylrhodanine (22.0 g .), powdered anhydrous zinc chloride (30.0 g .) and dry acetone ($250 \mathrm{c} . \mathrm{c}$.) were heated for 4 hr . in an autoclave in a steam-bath. Water (1 1.) was added, to precipitate the product which solidified. It ($\mathbf{1 6 . 6} \mathrm{g}$., 64%) formed soft, pale yellow needles, m. p. 75°, from isopropanol (Found: C, $\mathbf{4 6 \cdot 1 ; ~ H , 5 \cdot 1 ; ~ N , ~ 5 . 3 5 ; ~ S , ~ 2 4 . 5 . ~} \quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{NS}_{2}$ requires $\mathrm{C}, 46 \cdot 3 ; \mathrm{H}, 5 \cdot 0$; N, $5 \cdot 4 ;$ S, $24 \cdot 7 \%$).

3-Carboxymethyl-5-prop-2'-ylidene-2-thiothiazolid-4-one was obtained similarly in 26% yield as pale yellow flakes, m. p. 162-168 ${ }^{\circ}$ from aqueous ethanol (Found: C, $41.6 ;$ H, $4 \cdot 1 ;$ S, 27.5 . $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{NS}_{2}$ requires $\mathrm{C}, \mathbf{4 1 . 6 5 ; ~} \mathrm{H}, 3.9 ; \mathrm{S}, 27.7 \%$).

3-Allyl-5-prop-2'-ylidene-2-thiothiazolid-4-one.-3-Allylrhodanine (17.3g.), zinc chloride (27 g.), and acetone (250 c.c.) were heated for 8 hr . in an autoclave in a steam-bath. The solid (18.5 g ., 87%) obtained on precipitation with water formed pale, lemon-yellow needles, m. p. 53°, from isopropanol (Found: C, $50 \cdot 3 ; \mathrm{H}, 5 \cdot 15$; S, 30.1. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ONS}_{2}$ requires C, $50 \cdot 7$; H, $5 \cdot 15$; S, $\mathbf{3 0 \cdot 0 5 \%}$).

3-Ethoxycarbonylmethyl-5-(3-oxobut-2-ylidene)-2-thiothiazolid-4-one (V; $\mathrm{R}=\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$).-

3-Ethoxycarbonylmethylrhodanine (4.4 g .), diacetyl ($1.8 \mathrm{c.c}$.), powdered zinc chloride (5.4 g .), and dioxan ($10 \mathrm{c.c}$.) were heated for 5 hr . on a steam-bath. Addition of water (25 c.c.) to the deep yellow solution precipitated an oil which partly crystallized. The aqueous layer was decanted and the residue triturated with ethanol (15 c.c.). The solid (1.8 g ., $31 \cdot 5 \%$), washed with ethanol formed long yellow needles, m. p. 111°, from ethanol (Found: C, 46.2; H, 4.3; N, $4.9 ; \mathrm{S}, 21.9 . \quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{NS}_{2}$ requires C, $46.0 ; \mathrm{H}, 4.55 ; \mathrm{N}, 4.9 ; \mathrm{S}, 22.3 \%$).

3-Carboxymethyl-5-(3-oxobut-2-ylidene)-2-thiothiazolid-4-one ($\mathrm{V} ; \mathrm{R}=\mathrm{CH}_{2}{ }^{\circ} \mathrm{CO}_{2} \mathrm{H}$).-3-Carboxymethylrhodanine ($\mathbf{7 . 6 5}$ g.), diacetyl (3.6 c.c.), zinc chloride (10.8 g .), and dioxan (20 c.c.) were heated for 5 hr . on a steam-bath. The addition of water precipitated yellow grains. The product ($7.15 \mathrm{~g} ., 77.5 \%$) formed fine, yellow needles, m. p. 207°, from methanol (Found: C, 41.9; H, 3.5; $\mathrm{S}, 24.6 . \quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{NS}_{2}$ requires $\mathrm{C}, 41.7$; $\mathrm{H}, \mathbf{3 . 5}$; $\mathrm{S}, \mathbf{2 4 . 7 \%}$).

When the reaction was carried out in n-butanol for 20 hr ., the n -butyl ester ($7 \cdot 7 \mathrm{~g}$.) was obtained and formed long yellow needles, m. p. 58-59 ${ }^{\circ}$, from methanol (Found : C, 49.5; H, $5 \cdot 4 ; \mathrm{N}, 4.35 ; \mathrm{S}, 20 \cdot 4 . \quad \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{NS}_{2}$ requires $\left.\mathrm{C}, 49.5 ; \mathrm{H}, 5 \cdot 4 ; \mathrm{N}, 4.45 ; \mathrm{S}, 20.35 \%\right)$.

5-1'-Methoxycarbonylethylidene-3-methoxycarbonylmethyl-2-thiothiazolid-4-one (VI; $\mathrm{R}=\mathrm{Me}$). - 3-Carboxymethylrhodanine (9.5 g .), pyruvic acid ($5 \mathrm{cc.c}$.), methanol ($35 \mathrm{c} . \mathrm{c}$.), and zinc chloride $(13.5 \mathrm{~g}$.) were refluxed together for 17 hr . and treated with water. The solid (7.4 g ., 59%) obtained on chilling formed flat, yellow needles, m. p. 87-88 ${ }^{\circ}$, from isopropanol (Found : C, $42 \cdot 1 ; \mathrm{H}, 3.9 ; \mathrm{S}, 21 \cdot 9 . \quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{5} \mathrm{NS}_{2}$ requires $\mathrm{C}, 41 \cdot 8 ; \mathrm{H}, 3.8 ; \mathrm{S}, 22 \cdot 15 \%$). Employing other alcohols as solvents gave the diethyl, yellow needles, m. p. 68° (from isopropanol; 49% yield) (Found: C, $45 \cdot 2 ; \mathrm{H}, 4 \cdot 5 ; \mathrm{S}, 20 \cdot 15 . \quad \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{NS}_{2}$ requires $\mathrm{C}, 45 \cdot 4 ; \mathrm{H}, 4 \cdot 7 ; \mathrm{S}, 20.2 \%$), and the di-n-butyl ester (52%), soft, yellow needles, m. p. 52° (from methanol) (Found: C, $51 \cdot 3 ; \mathrm{H}$, $5.9 ; \mathrm{N}, 3.9$; S, $17.05 . \quad \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{NS}_{2}$ requires $\mathrm{C}, 51 \cdot 5 ; \mathrm{H}, 6.15 ; \mathrm{N}, 3.75 ; \mathrm{S}, 17.15 \%$).

3-Allyl-5-[4-(3-ethylbenzothiazolin-2-ylidene)but-2-en-1-ylidene]-2-thiothiazolid-4-one (IV; $\mathrm{R}^{\prime \prime}=$ $\mathrm{H}, n=0, m=1$).-2-Ethylthiobenzothiazole ethotoluene-p-sulphonate (2.0 g .), 3 -allyl- 5 -but-2^{\prime}-en- 1^{\prime}-ylidenerhodanine ($\mathbf{1} \cdot 2 \mathrm{~g}$.), pyridine ($10 \mathrm{c.c}$.), and triethylamine ($0.8 \mathrm{c.c}$.) were heated on the steam-bath for 30 min . Ethanol (20 c.c.) was added and the whole was chilled overnight. The dye ($1 \cdot 1 \mathrm{~g} ., 57 \%$) which separated formed blue needles, m. p. 220°, from benzene (Found : $\mathrm{N}, 7 \cdot 2 ; \mathrm{S}, 24 \cdot 75 . \quad \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ON}_{2} \mathrm{~S}_{3}$ requires $\mathrm{N}, 7 \cdot 25 ; \mathrm{S}, 24.9 \%$), $\lambda_{\text {max. }} 605 \mathrm{~m} \mu$.

3-Allyl-5-[6-(3-ethylbenzothiazolin-2-ylidene)hexa-2:4-dien-1-ylidene]-2-thiothiazolid-4-one ($\mathrm{IV} ; \mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{H}, n=m=1$).-2-2'-Acetanilidovinylbenzothiazole ethiodide ($2 \cdot 25 \mathrm{~g}$.), 3-allyl5 -but- 2^{\prime}-en- 1^{\prime}-ylidenerhodanine (1.15 g .), pyridine (10 c.c.), and triethylamine ($0.8 \mathrm{c} . \mathrm{c}$.) were heated for 30 min . on a steam-bath and then diluted with ethanol ($20 \mathrm{c} . \mathrm{c}$.). The dye separated rapidly, forming brilliant, green needles, m. p. 212° ($1.0 \mathrm{~g} ., 49 \cdot 5 \%$), from benzene (Found : N, $6.65 ; \mathrm{S}, 23 \cdot 25 . \quad \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ON}_{2} \mathrm{~S}_{3}$ requires $\mathrm{N}, 6.8 ; \mathrm{S}, 23 \cdot 3 \%$), $\lambda_{\text {max. }} 630 \mathrm{~m} \mu$.

3-Allyl-5-\{1-[3-ethylnaphtho $\left(1^{\prime}: 2^{\prime}-4: 5\right)$ thiazolin-2-ylidene]pent-2-en-4-ylidene $\}-2-$ thiothi-azolid-4-one (IV; $n=0, m=1, \mathrm{R}^{\prime \prime}=\mathrm{Me}$).-2-2'-Acetanilidovinylnaphtho($1^{\prime}: 2^{\prime}-4: 5$) thiazole ethiodide (2.5 g .), 3-allyl-5-prop-2'-ylidenerhodanine ($1 \cdot 1 \mathrm{~g}$.), pyridine (10 c.c.), and triethylamine (0.8 c.c.) were heated on a steam-bath for 30 min . Ethanol (20 c.c.) was added to precipitate $1.4 \mathrm{~g} .\left(62.0 \%\right.$) of $d y e$. It formed blue needles, m. p. 245°, from pyridine-ethanol (Found: N, $6 \cdot 4 ; \mathrm{S}, 21 \cdot 2 . \quad \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{ON}_{2} \mathrm{~S}_{\mathrm{s}}$ requires $\mathrm{N}, 6 \cdot 2 ; \mathrm{S}, 21 \cdot 35 \%$), $\lambda_{\text {max. }} 610 \mathrm{~m} \mu$.

3-Ethoxycarbonylmethyl-5-[1-(3-ethylbenzothiazolin-2-ylidene)-5-oxohex-2-en-4-ylidene]-2-thio-thiazolid-4-one (IV; $n=0, m=1, \mathrm{R}^{\prime \prime}=\mathrm{Ac}$).-2-2'-Acetanilidovinylbenzothiazole ethotoluene-p-sulphonate ($2 \cdot 25 \mathrm{~g}$.), 5 -(3-oxobutan-2-ylidene)-3-ethoxycarbonylmethylrhodanine (1.45 g .), ethanol (10 c.c.), and triethylamine were refluxed together for 15 min . The dye was precipitated as a tar, on chilling of the mixture. Ethanol (10 c.c.) was added and the mixture was boiled until crystallization set in. The $d y e\left(1.0 \mathrm{~g} ., 42 \%\right.$) formed a dark blue powder, m. p. 156°, from ethanol (Found: C, $55.6 ; \mathrm{H}, 4.6 ; \mathrm{N}, 5.65 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}_{3}$ requires C, $55.75 ; \mathrm{H}, 4.65$; N, $5.9 \%), \lambda_{\text {max. }} 653 \mathrm{~m} \mu$.

3-Ethoxycarbonylmethyl-5-[1-(3-ethylbenzothiazolin-2-ylidene)-3-oxobut-2-ylidene]-2-thiothi-azolid-4-one (IV ; $m=n=0, \mathrm{R}^{\prime \prime}=\mathrm{Ac}$). -2 -Ethylthiobenzothiazole ethotoluene- p-sulphonate (2.0 g .), 3-ethoxycarbonylmethyl-5-(3-oxobutan-2-ylidene)rhodanine (1.4 g .), ethanol (10 c.c.), and triethylamine (0.8 c.c.) were refluxed together for 5 min . The dye separated from the hot solution. It ($1.4 \mathrm{~g} ., 62.5 \%$) formed rosettes of blue needles, m. p. 195°, from benzene (Found : $\mathrm{N}, 6 \cdot 2 ; \mathrm{S}, 21 \cdot 35 . \quad \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}_{3}$ requires $\mathrm{N}, \mathbf{6} \cdot 25$; $\mathrm{S}, 21 \cdot 4 \%$), $\lambda_{\text {max. }} 520 \mathrm{~m} \mu$.

3-Methoxycarbonylmethyl-5-[1-methoxycarbonyl-2-(3-methylthiazolidin-2-ylidene)ethylidene]-2-thiothiazolid-4-one (IV; $m=n=0, \mathrm{R}^{\prime \prime}=\mathrm{CO}_{2} \mathrm{Me}$).-2-Methylthiothiazoline methotoluene- p sulphonate (1.6 g .), 3 -methoxycarbonyl-5-1'-methoxycarbonylethylidenerhodanine (1.45 g .), ethanol (10 c.c.), and triethylamine (0.8 c.c.) were refluxed together for 10 min . The dye $(1.0 \mathrm{~g} ., 51.5 \%)$ separated as an oil and then crystallized slowly when chilled. It formed red
needles or steel-blue prisms, m. p. 178°, from benzene-ethanol (Found: $\mathrm{N}, \mathbf{7 . 0 5}$; S, 24.7. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}_{3}$ requires $\mathrm{N}, 7 \cdot 2 ; \mathrm{S}, \mathbf{2 4} \cdot \mathbf{7 5} \%$), $\lambda_{\text {max. }} 462 \mathrm{~m} \mu$.

4-[1-Ethoxy-2-(3-ethylbenzothiazolin-2-ylidene)ethylidene]-2-phenyloxazol-5-one (IV ; $n=m=$ $\left.0, \mathrm{R}^{\prime \prime}=\mathrm{OEt}\right)$.-2-Ethylthiobenzothiazole ethotoluene-p-sulphonate ($2 \cdot 0 \mathrm{~g}$.), 4-1'-ethoxy-ethylidene-2-phenyloxazol-5-one (1.15 g .), n-propanol (5 c.c.), and triethylamine (0.8 c.c.) were refluxed together for 10 min ., then chilled, and the containing vessel was scratched. The dye ($0.8 \mathrm{~g} ., 50 \%$) formed orange threads, m. p. 198°, from ethanol (Found : C, 66.95; H, $5.05 ; \mathrm{N}$, $7 \cdot 3 ; \mathrm{S}, 8 \cdot 3 . \quad \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 67 \cdot 3 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 7 \cdot 15 ; \mathrm{S}, 8 \cdot 15 \%$), $\lambda_{\max .} 480 \mathrm{~m} \mu$.

4-[1-Ethoxy-2-(1-ethyl-1 : 2-dihydroquinolin-2-ylidene)ethylidene]-2-ethylthiothiazol-5-one.-4-1^{\prime}-Ethoxyethylidene-2-ethylthiothiazol-5-one (1.2 g.), 2-ethylthioquinoline ethotoluene-psulphonate (1.95 g .), pyridine (10 c.c.), and triethylamine (0.8 c.c.) were heated together for 15 min . on the steam-bath. Ethanol (20 c.c.) was added and the solution was chilled. The dye ($1.05 \mathrm{~g} ., 54.5 \%$), after being washed with ethanol, formed golden-green crystals, m. p. $\mathbf{1 7 6}^{\circ}$, from methanol (Found : C, 62.55; H, 5.8; N, 6.95; S, 16.4. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$ requires C, 62.2; $\mathrm{H}, 5 \cdot 7$; $\mathrm{N}, 7.25$; $\mathrm{S}, 16.6 \%$). $\lambda_{\max } 545 \mathrm{~m} \mu$.

The following dyes are a selection of those obtained similarly.
2-[1-Ethoxy-2-(3-ethylbenzothiazolin-2-ylidene)ethylidene]indane-1:3-dione formed red needles (74% yield), m. p. 195-196 ${ }^{\circ}$, from ethanol (Found: C, 69.8; H, 4.95. $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NS}$ requires C, $70.0 ; \mathrm{H}, 5.05 \%$). $\lambda_{\text {max. }} 470 \mathrm{~m} \mu$.

4-[1-Ethoxy-2-(3-ethylbenzothiazolin-2-ylidene)ethylidene]-3-phenylisooxazol-5-one formed pink flakes with a blue reflex (47% yield), m. p. 185°, from ethanol (Found : N, 7.45 ; S, 8.2. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{N}, 7 \cdot 15 ; \mathrm{S}, 8 \cdot 15 \%$), $\lambda_{\text {max. }} 448 \mathrm{~m} \mu$.

4-[1-Ethoxy-2-(3-ethylbenzothiazolin-2-ylidene)ethylidene]-3-methyl-1-phenylpyrazol-5-one was obtained in 74% yield as soft rosettes of orange-red needles, m. p. 172°, from ethanol (Found : $\mathrm{N}, 10 \cdot 4$. $\quad \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{~S}$ requires $\mathrm{N}, 10 \cdot 35 \%$), $\lambda_{\text {max. }} 548 \mathrm{~m} \mu$.

3-Ethoxycarbonyl-5-[1-ethoxy-2-(3-ethylbenzothiazolin-2-ylidene)ethylidene]-2-thiothiazolid-4one, obtained in 52% yield, formed rosettes of magenta needles, m. p. 127°, from benzene-light petroleum (b. p. $60-80^{\circ}$) (Found : S, 21.1. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}_{3}$ requires $\mathrm{S}, 21 \cdot 35 \%$), $\lambda_{\max } 516 \mathrm{~m} \mu$.

4-[1-Ethoxy-4-(3-ethylbenzoxazolin-2-ylidene)but-2-en-1-ylidene]-2-phenyloxazol-5-one (IV; $n=$ $0, m=1, \mathrm{R}^{\prime \prime}=\mathrm{OEt}$).-2-2'-Acetanilidovinylbenzoxazole ethiodide ($\mathbf{2 \cdot 2} \mathrm{g}$.), 4-1'-ethoxy-ethylidene-2-phenyloxazol-5-one (1.2 g .), ethanol ($10 \mathrm{c} . \mathrm{c}$.), and triethylamine ($0.8 \mathrm{c.c}$.) were refluxed together for 30 min . The whole solidified when chilled. The $d y e(1.2 \mathrm{~g} ., 85 \%$) formed magenta threads, m. p. 191°, from benzene-ethanol (Found: C, 71.55; H, 5.6; N, 7.1. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires $\mathrm{C}, 71.7 ; \mathrm{H}, 5.45 ; \mathrm{N}, 6.95 \%$), $\lambda_{\text {max. }} 545 \mathrm{~m} \mu$.

2-Benzylthio-4-[1-ethoxy-4-(3-ethylbenzoxazolin-2-ylidene)but-2-en-1-ylidene]thiazol-5-one was obtained in 35% yield as blue needles, m. p. 122°, from ethanol (Found : C, 64.5; H, 5.1; N, $6.25 ; \mathrm{S}, 13.9 . \quad \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 64.7 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 6.05 ; \mathrm{S}, 13.8 \%$), $\lambda_{\text {max. }} 570 \mathrm{~m} \mu$.

3-Ethoxycarbonylmethyl-5-[1-ethoxy-4-(3-ethylbenzothiazolin-2-ylidene)but-2-en-1-ylidene]-2-thio-thiazolid-4-one, obtained in 88% yield, formed soft, deep blue needles, m. p. 171°, from benzenelight petroleum (b. p. 60-80 $)$ (Found : N, 5.7; S, 20.1. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}_{3}$ requires $\mathrm{N}, 5 \cdot 9$; S , 20.2%), $\lambda_{\text {max. }} 610 \mathrm{~m} \mu$.

3-Ethoxycarbonylmethyl-5-\{4-[3-ethylnaphtho(1': 2'-4:5)thiazolin-2-ylidene]-1-methoxybut-2-en-1-ylidene\}-2-thiothiazolid-4-one (IV ; $n=0, m=1, \mathrm{R}^{\prime \prime}=\mathrm{OMe}$) was obtained in 43% yield as green crystals, m. p. 184°, from benzene-ethanol (Found: $\mathrm{N}, 5 \cdot 45$; $\mathrm{S}, 18.7 . \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}_{3}$ requires $\mathrm{N}, 5.45 ; \mathrm{S}, 18.75 \%$), $\lambda_{\max .} 642 \mathrm{~m} \mu$ in pyridine.

3-Ethoxycarbonylmethyl-5-[1-ethoxy-6-(3-ethylbenzothiazolin-2-ylidene)hexa-2:4-dien-1-ylidene]-2-thiothiazolid-4-one (IV ; $n=m=1, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{OEt}$).-2-4'-Acetanilidobuta-2 : 4-dienylbenzothiazole ethiodide (2.4 g .), 3-ethoxycarbonylmethyl-5-1'-ethoxyethylidenerhodanine (1.5 g.), ethanol (20 ccc .), and triethylamine ($0.8 \mathrm{c.c}$.) were refluxed together for 2 min . The mixture was chilled to give a tar. The liquor was decanted, and the tar was washed with ethanol and was then refluxed with ethanol (60 c.c.) until crystallization set in. The dye (l•1 g., 44%) was dissolved in benzene (25 c.c.) and filtered and an equal volume of ethanol was added. The whole was concentrated to 20 c.c. and chilled. The dye crystallized and the process was repeated. The $d y e$ formed small, bright green crystals, m. p. 187° (Found : C, 57.7; H, 5•25; $\mathrm{N}, 5 \cdot 45 . \quad \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}_{3}$ requires C, $57 \cdot 4 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 5 \cdot 55 \%$), $\lambda_{\max } 620 \mathrm{~m} \mu$.

3-Ethoxycarbonylmethyl-5-[2-(3-ethylbenzothiazolin-2-ylidene)-1-ethylthioethylidene]-2-thiothi-azolid-4-one (IV ; $n=m=0, \mathrm{R}^{\prime \prime}=\mathrm{SEt}$).-2-Ethylthiobenzothiazole ethotoluene- p-sulphonate (1.3 g .), 3-ethoxycarbonylmethyl-5-1'-ethylthioethylidenerhodanine (1.0 g.), ethanol ($10 \mathrm{c.c}$.), and triethylamine (0.5 c.c.) were refluxed together for 5 min . The dye ($0.9 \mathrm{~g} ., 58 \%$) crystallized when the solution was chilled, and was obtained as flat, green needles, m. p. 157°, from ethanol
(Found: C, $51.7 ; \mathrm{H}, 5.05$; N, 6.25; S, 27.4. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}_{4}$ requires C, $51.5 ; \mathrm{H}, 4.7$; $\mathrm{N}, 6.0$; S, $27 \cdot 45 \%$), $\lambda_{\text {max. }} 561 \mathrm{~m} \mu$.

3-Ethoxycarbonylmethyl-5-[1-ethylthio-2-(3-methylthiazolidin-2-ylidene)ethylidene]-2-thiothi-azolid-4-one.- 2 -Methylthiothiazoline methotoluene-p-sulphonate (1.6 g .), 3 -ethoxycarbonyl-methyl-5-1'-ethylthioethylidenerhodanine (1.5 g .), pyridine ($10 \mathrm{c.c}$.), and triethylamine (0.8 c.c.) were heated together on the steam-bath for 15 min . and diluted with water ($25 \mathrm{c} . \mathrm{c}$.). The dye was precipitated as an oil which crystallized rapidly. It ($1 \cdot 3 \mathrm{~g} ., 64 \cdot 5 \%$) formed flat violet needles, m. p. 139-143 ${ }^{\circ}$, after 2wo crystallizations from ethanol (Found: C, $44.3 ; \mathrm{H}, 4.75$; N, $7.1 ; \mathrm{S}, 31.55 . \quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}_{4}$ requires C, $44.5 ; \mathrm{H}, 4.95 ; \mathrm{N}, 6.95 ; \mathrm{S}, 31.7 \%$), $\lambda_{\text {max. }} 515 \mathrm{~m} \mu$.

A third crystallization from a more dilute alcoholic solution caused glossy, red flakes (0.9 g. ; $\mathrm{m} . \mathrm{p} .147-149^{\circ}$) to separate, which had m. p. 152-154 after two more crystallizations from alcohol (Found : C, 44.75 ; H, $5 \cdot 05$; N, 7.25 ; S, 31.95%), $\lambda_{\text {max. }} 515 \mathrm{~m} \mu$.

The filtrate from the first crystallization gave, on concentration, soft red needles (0.15 g .), m. p. 131°, which on recrystallization from ethanol formed flat red needles, m. p. 131° (Found : C, $45.0 ; \mathrm{H}, 5.3 ; \mathrm{N}, 7.25 ; \mathrm{S}, 32.0 \%$), $\lambda_{\text {max. }} 515 \mathrm{~m} \mu$.

3-Ethoxycarbonylmethyl-5-[2-(3-ethylbenzothiazolin-2-ylidene)-1-p-tolylthioethylidene]-2-thio-thiazolid-4-one (IV; $n=m=0, \mathrm{R}^{\prime \prime}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me} \cdot \mathrm{S} \cdot$), obtained similarly in 34% yield, formed flat, brassy needles, m. p. 237-239 ${ }^{\circ}$, from benzene-ethanol (Found: N, 5.25; S, $24 \cdot 5$. $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}_{4}$ requires $\mathrm{N}, 5 \cdot 3 ; \mathrm{S}, \mathbf{2 4} \cdot 25 \%$), $\lambda_{\text {max. }} 566 \mathrm{~m} \mu$.

3-Ethoxycarbonylmethyl-5-[2-(3-ethylbenzothiazolin-2-ylidene)-1-n-octylthioethylidene]-2-thio-thiazolid-4-one (IV; $n=m=0, \mathrm{R}^{\prime \prime}=n-\mathrm{C}_{8} \mathrm{H}_{17}{ }^{\circ} \mathrm{S}^{\circ}$) obtained in 41% yield formed soft, dark green flakes, m. p. 103°, from ethanol (Found : N, 4.95; S, 23.3. $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}_{4}$ requires N, $5 \cdot 1$; S, 23.3%), $\lambda_{\text {max. }} 570 \mathrm{~m} \mu$.

4-[2-(3-Ethylbenzothiazolin-2-ylidene)-1-ethylthioethylidene]-2-ethylthiothiazol-5-one.-2-Ethylthiobenzothiazole ethotoluene-p-sulphonate (2.0 g .), 2-ethylthio-4-1'-ethylthioethylidenethiazol5 -one ($1 \cdot 1 \mathrm{~g}$.), ethanol (10 c.c.), and triethylamine ($0.8 \mathrm{c.c}$.) were refluxed together for 5 min . The $d y e(1 \cdot 1 \mathrm{~g} ., 54 \%$) which separated on chilling formed large, golden-green aggregates, m. p. 113°, from ethanol (Found: C, 52.75; H, 4.6; N, 7.0; S, 31.3. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ON}_{2} \mathrm{~S}_{4}$ requires C, $52.95 ; \mathrm{H}, 4.9 ; \mathrm{N}, 6.85 ; \mathrm{S}, 31 \cdot 4 \%$), $\lambda_{\text {max. }} 557 \mathrm{~m} \mu$.

3-Ethoxycarbonylmethyl-5-[4-(3-ethylbenzoxazolin-2-ylidene)-1-ethylthiobut-2-en-1-ylidene]-2-thiothiazolid-4-one (IV; $n=0, m=1, \mathrm{R}^{\prime \prime}=\mathrm{EtS}$).-2-2'-Acetanilidovinylbenzoxazole ethiodide (1.45 g .), 3 -ethoxycarbonylmethyl-5-1'-ethylthioethylidenerhodanine (1.0 g .), ethanol ($10 \mathrm{c.c}$.), and triethylamine (0.5 c.c.) were refluxed for 5 min . The dye ($0.7 \mathrm{~g} ., 44 \%$) which separated on chilling formed blue-green threads, m. p. 172°, from ethanol (Found: C, $55.6 ; \mathrm{H}, 5 \cdot 05 ; \mathrm{N}, 5 \cdot 8$; $\mathrm{S}, 19.9 . \quad \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}_{3}$ requires $\left.\mathrm{C}, 55 \cdot 5 ; \mathrm{H}, 5.05 ; \mathrm{N}, 5 \cdot 9 ; \mathrm{S}, 20.2 \%\right), \lambda_{\text {max }} 608 \mathrm{~m} \mu$.

3-Ethoxycarbonylmethyl-5-[4-(3-ethylbenzothiazolin-2-ylidene]-1-ethylthiobut-2-en-1-ylidene]-2-thiothiazolid-4-one was obtained in 69% yield and formed flat, blue-green needles, m. p. 174°, from benzene-light petroleum (b. p. 60-80) (Found: N, 5.85; S, 25.85. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}_{4}$ requires $\mathrm{N}, 5.7 ; \mathrm{S}, 26.0 \%$), $\lambda_{\text {max. }} 643 \mathrm{~m} \mu$.

4-[4-(3-Ethylbenzothiazolin-2-ylidene)-1-ethylthiobut-2-en-1-ylidene]-2-ethylthiothiazol-5-one was obtained in 39% yield as flat golden-green needles, m. p. 162°, from benzene-ethanol (Found : $\mathrm{S}, 30 \cdot 75 . \quad \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ON}_{2} \mathrm{~S}_{4}$ requires $\mathrm{S}, 30 \cdot 95 \%$), $\lambda_{\text {max. }} 638 \mathrm{~m} \mu$.

Hydrolysis of (IV; $n=m=0, \mathrm{R}^{\prime \prime}=\mathrm{OEt}$).-3-Carboxymethyl-5-(3-ethylbenzothiazolin-2ylidene) acetyl-4-hydroxy-2-thiothiazoline (VII). 3-Ethoxycarbonylmethyl-5-[1-ethoxy-2-(3-ethyl-benzothiazolin-2-ylidene)ethylidene]-2-thiothiazolid-4-one (0.9 g.), ethanol (20 cc. .), and a solution of potassium hydroxide (0.45 g .) in water ($10 \mathrm{c} . \mathrm{c}$.) were refluxed together on a steambath for 75 min . The orange solution was acidified to give an orange solid dye (0.6 g ., $\mathbf{7 6 \%}$). It formed fine, rust red needles, m. p. 222°, from ethanol. It gave a yellow solution in aqueous sodium carbonate (Found: C, 48.5; H, 3.7; N, 6.8; S, 24.55. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}_{\mathbf{3}}$ requires C, 48.75 ; H, 3.55 ; N, 7.1 ; S, 24.4%), $\lambda_{\text {max. }} 440 \mathrm{~m} \mu$.

3-Carboxymethyl-5-(1-ethyl-1 : 2-dihydroquinolin-2-ylidene)acetyl-4-hydroxy-2-thiothiazoline was obtained similarly in 51% yield as violet needles, m. p. $237^{\circ}, \lambda_{\max .} 488 \mathrm{~m} \mu$ in methanolic triethylamine, by dissolving the dye in alcoholic triethylamine and acidifying the solution with acetic acid (Found: N, 7.25; S, 16.3. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}$ requires $\mathrm{N}, 7 \cdot 2$; S, 16.5\%).

3-Allyl-5-(3-ethylbenzothiazolin-2-ylidene)acetyl-4-hydroxy-2-thiothiazoline was obtained in 64% yield as pink needles, m. p. 199°, from ethanol (Found: C, $54 \cdot 15 ;$ H, $4 \cdot 55$; S, $25 \cdot 5$. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}_{3}$ requires $\mathrm{C}, 54.25 ; \mathrm{H}, 4.25 ; \mathrm{S}, 25 \cdot 5 \%$, $\lambda_{\text {max. }} 442 \mathrm{~m} \mu$ in ethanolic triethylamine.

Complex meroCyanines.-The general procedure for these dyes (IX-XIII) consisted of fusing (IV) (0.01 mol .) with methyl toluene-p-sulphonate ($0.01-0.015 \mathrm{~mol}$.) at $120-140^{\circ}$ for $30-120 \mathrm{~min}$. , adding (III) (0.01 mol .), pyridine ($20 \mathrm{c} . \mathrm{c}$.), and triethylamine (0.011 mol .) to the
homogeneous melt or solid and heating the whole on the steam-bath for 10 min . The addition of ethanol ($50 \mathrm{c.c}$.) then usually caused the dye to crystallize. It was collected, washed with ethanol, and recrystallized from benzene, or was dissolved in hot pyridine and treated with $2-3$ times the volume of hot ethanol. In general $2-3$ recrystallizations were necessary to obtain a pure specimen.

3-Allyl-2-[2-(3-allyl-4-oxo-2-thiothiazolidin-5-ylidene)prop-1-ylidene]-5-[1-(3-ethylbenzothi-azolin-2-ylidene)prop-2-ylidene]thiazolid-4-one (IX; $\quad m=0, \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{Me}, \mathrm{Y}=\mathrm{S}$, $\mathrm{X}=\mathrm{N} \cdot \mathrm{C}_{3} \mathrm{H}_{5}$) was obtained in 19% yield and formed soft, dark green needles, m. p. 276°, from pyridine-ethanol (Found : $\mathrm{N}, \mathbf{7 . 4 5}$; $\mathrm{S}, \mathbf{2 3 \cdot 2} . \mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{~S}_{4}$ requires $\mathrm{N}, \mathbf{7 . 6}$; $\mathrm{S}, \mathbf{2 3 . 5} \%$), $\lambda_{\text {max. }}$. $648 \mathrm{~m} \mu$ in pyridine.

3-Allyl-2-[2-(3-allyl-4-oxo-2-thiothiazolidin-5-ylidene)-2-ethoxyethylidene]-5-[1-(3-ethylbenzo-thiazolin-2-ylidene)but-2-ylidene]thiazolid-4-one ($\mathrm{IX} ; m=0, \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Et}, \mathrm{R}^{\prime \prime}=\mathrm{OEt}, \mathrm{Y}=$ $\mathrm{S}, \mathrm{X}=\mathrm{N} \cdot \mathrm{C}_{3} \mathrm{H}_{5}$) was obtained in 45% yield and formed soft, green needles, m. p. $2^{209^{\circ}}$, from pyridine-ethanol (Found : N, 6.9; S, 21.3. $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{~N}_{3} \mathrm{~S}_{4}$ requires $\mathrm{N}, 7 \cdot 05 ; \mathrm{S}, 21.45 \%$), $\lambda_{\text {max. }}$. $654 \mathrm{~m} \mu$ in pyridine.

3-Allyl-2-[2-(3-allyl-4-oxo-2-thiothiazolidin-5-ylidene) -2-ethoxyethylidene]-5-[1-ethoxy-2-(3-ethylbenzothiazolin-2-ylidene)ethylidene]thiazolid-4-one (IX; $m=0, \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{OEt}$, $\mathrm{Y}=\mathrm{S}, \mathrm{X}=\mathrm{N} \cdot \mathrm{C}_{3} \mathrm{H}_{5}$) was obtained in 12% yield as soft, green needles, m. p. 200°, from benzene-ethanol (Found : N, 6.85; S, 20.9. $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}_{4}$ requires $\mathrm{N}, 6.85 ; \mathrm{S}, 20.9 \%$), $\lambda_{\text {max }}$. $645 \mathrm{~m} \mu$ in pyridine.

3-Ethoxycarbonylmethyl-2-[2-(3-ethoxycarbonylmethyl-4-oxo-2-thiothiazolidin-5-ylidene)-2-eth-oxyethylidene]-5-[2-(3-methylthiazolidin-2-ylidene)prop-1-ylidene]thiazolid-4-one (IX; $m=0$, $\left.\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{OEt}, \mathrm{X}=\mathrm{N} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}, \mathrm{Y}=\mathrm{S}\right)$. 3-Ethoxycarbonylmethyl-5-[2-(3-methylthiazolidin-2-ylidene)prop-1-ylidene]-2-thiothiazolid-4-one (1.8 g .) and methyl toluene-psulphonate (1.0 g .) were fused at 130° for 1 hr . To the viscous melt was added 3 -ethoxycarbonylmethyl-5-1'-ethoxyethylidenerhodanine (1.45 g .), ethanol ($10 \mathrm{c} . \mathrm{c}$.), and triethylamine (0.8 c.c.), and the whole was refluxed for 10 min . on a steam-bath. The crystals (0.9 g., 30%) collected after chilling formed brilliant green crystals, m. p. 194-195 ${ }^{\circ}$, from benzene-ethanol (Found: N, 6.5; S, 20.8. $\quad \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{~S}_{4}$ requires $\mathrm{N}, 6.85$; S, 20.9\%), $\lambda_{\text {max. }}$. $605 \mathrm{~m} \mu$ in pyridine.

3-Allyl-5-[1-(3-ethylbenzothiazolin-2-ylidene)but-2-ylidene]-2-[2-ethylthio-2-(2-ethylthio-5-oxo-thiazolin-4-ylidene)ethylidene]thiazolid-4-one ($\mathrm{IX} ; \quad m=0, \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Et}, \mathrm{R}^{\prime \prime}=\mathrm{SEt}, \mathrm{X}=$ $\mathrm{N} \cdot \mathrm{C}_{3} \mathrm{H}_{5}, \mathrm{Y}=\mathrm{S}$) was obtained in 50% yield as black needles (gold reflex), m. p. 147°, from benzene-ethanol (Found: $\mathrm{N}, 6.95$; $\mathrm{S}, \mathbf{2 6 . 4}$. $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{~S}_{5}$ requires $\mathrm{N}, \mathbf{7 . 0}$; $\mathrm{S}, \mathbf{2 6 . 6} \%$), $\lambda_{\text {max }}$. $684 \mathrm{~m} \mu$ in pyridine.

3-Ethoxycarbonylmethyl-5-[2-(3-ethylbenzothiazolin-2-ylidene)-1-ethylthioethylidene]-2-[2-ethyl-thio-2-(2-ethylthio-5-oxothiazolin-4-ylidene)ethylidene]thiazolid-4-one (IX; $m=0, \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=$ $\mathrm{R}^{\prime \prime}=\mathrm{SEt}, \mathrm{X}=\mathrm{N} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}, \mathrm{Y}=\mathrm{S}$), obtained in 29% yield, formed brassy needles, $\mathrm{m} . \mathrm{p}$. 186°, from benzene-ethanol (Found: N, 6.5; S, 28.15. $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}_{6}$ requires $\mathrm{N}, 6 \cdot 2$; $\mathrm{S}, 28 \cdot 3 \%$), $\lambda_{\text {max }} 684 \mathrm{~m} \mu$ in pyridine.

3-Ethoxycarbonylmethyl-2-[2-ethoxy-2-(2-ethylthio-5-oxothiazolin-4-ylidene)ethylidene]-5-\{1-ethoxy-2-[4-(3-ethyl-4:5-diphenylthiazolin-2-ylidene-ethylidene)-5-oxo-3-methylthiazolidin-2-ylidene]ethylidene $\}$ thiazolid-4-one ($\mathrm{XI} ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{OEt}$). 2-[2-(3-Ethoxycarbonylmethyl-4-oxo-2-thiothiazolidin-5-ylidene)-2-ethoxyethylidene]-4-(3-ethyl-4:5-diphenylthiazolin-2-ylidene-ethyl-idene)-3-methylthiazolid-5-one (1.05 g .) and methyl toluene- p-sulphonate (0.5 g .) were fused at 130° in an oil-bath for $\frac{1}{2} \mathrm{hr}$. The melt had then solidified. The cake was broken up, 4-1'-ethoxyethylidene-2-ethylthiothiazol-5-one (0.4 g .), ethanol ($20 \mathrm{c.c}$.), and triethylamine ($0.25 \mathrm{c} . \mathrm{c}$.) were added and the whole was refluxed for 5 min . The dye separated as an oil from the cooled solution, then crystallized. It ($0.75 \mathrm{~g} ., 55.5 \%$) was recrystallized from pyridine-ethanol (green needles, m. p. 244°), then twice from benzene-ethanol, and formed coppery red flakes, m. p. 247° (Found : C, $57.95 ; \mathrm{H}, 4.8 ; \mathrm{N}, 6.3 ; \mathrm{S}, 17.95 . \mathrm{C}_{48} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{~S}_{5}$ requires C, $58.1 ; \mathrm{H}, 5.0 ; \mathrm{N}, 6.3$; $\mathrm{S}, 18.05 \%$), $\lambda_{\text {max. }} 772 \mathrm{~m} \mu$ in pyridine.

3-Ethoxycarbonylmethyl-5-\{2-[4-(3-ethyl-4 : 5-diphenylthiazolin-2-ylidene-ethylidene)-5-oxo-3-methylthiazolidin-2-ylidene]-1-ethylthioethylidene $\}$-2-[2-ethylthio-2-(2-ethylthio-5-oxothiazolin-4-yl-idene)ethylidene]thiazolid-4-one ($\mathrm{XI} ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{SEt}$). 2-[2-(3-Ethoxycarbonylmethyl-4-oxo-2-thiothiazolidin-5-ylidene)-2-ethylthioethylidene]-4-(3-ethyl-4 : 5-diphenylthiazolin-2-ylidene)-3-methylthiazolid-5-one (1.4 g .) and methyl toluene- p-sulphonate (0.5 g .) were fused at 130° in an oil-bath for 1 hr . 2-Ethylthio-4-1'-ethylthioethylidenethiazol-5-one (0.6 g .), pyridine ($15 \mathrm{c} . \mathrm{c}$.), and triethylamine (0.4 c.c.) were added and the whole was heated for 5 min . on a steam-bath. Ethanol (20 c.c.) was added and heating continued for a further 10 min . After the addition of a
similar quantity of ethanol the solution was chilled. The dye ($1.3 \mathrm{~g} ., 71.5 \%$) which separated was washed with ethanol and acetone and obtained as soft bronze needles, m. p. 258°, after two recrystallizations from benzene (Found : C, $56 \cdot 15 ; \mathrm{H}, 4 \cdot 8 ; \mathrm{N}, 6 \cdot 0 ; \mathrm{S}, 24 \cdot 2 . \quad \mathrm{C}_{43} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{~N}_{4} \mathrm{~S}_{7}$ requires $\mathrm{C}, 56.0 ; \mathrm{H}, 4.8 ; \mathrm{N}, 6.1 ; \mathrm{S}, 24.4 \%$), $\lambda_{\max } .865 \mathrm{~m} \mu$ in pyridine.

3-Ethoxycarbonylmethyl-5-\{2-[4-(3-ethylbenzoselenazolin-2-ylidene-ethylidene)-5-oxo-3-methyl-thiazolidin-2-ylidene]-1-ethylthioethylidene\}-2-[2-ethylthio-2-(2-ethylthio-5-oxothiazolin-4-ylidene)-ethylidene]thiazolid-4-one ($\mathrm{XI} ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{SEt}$) was obtained similarly in 62% yield and formed dark golden threads, m. p. 220°, after three recrystallizations from benzene (Found : C, $48 \cdot 45$; $\mathrm{H}, 4.5 ; \mathrm{N}, 6.85$. $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{~N}_{4} \mathrm{~S}_{6}$ Se requires $\mathrm{C}, 48.6 ; \mathrm{H}, 4.4 ; \mathrm{N}, 6.45 \%$), $\lambda_{\max } .822 \mathrm{~m} \mu$ in pyridine.

3-Ethoxycarbonylmethyl-2-(3-ethoxycarbonylmethyl-4-oxo-2-thiothiazolidin-5-ylidene)-5-\{2-[4-(3-ethylbenzoselenazolin-2-ylidene-ethylidene)-5-oxo-3-methylthiazolidin-2-ylidene]-1-ethylthioethyl-idene\}thiazolid-4-one (XIII) was obtained in 75% yield as brilliant golden flakes, m. p. 288°, from pyridine (Found : C, 47.2; H, 4•1; N, 6.65. $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{~S}_{5}$ Se requires $\mathrm{C}, 47.3 ; \mathrm{H}, 4.05 ; \mathrm{N}$, 6.7), $\lambda_{\max .} 765 \mathrm{~m} \mu$ in pyridine.

3-Ethoxycarbonylmethyl-2-[2-(3-ethoxycarbonylmethyl-4-oxo-2-thiothiazolidin-5-ylidene)-2-ethyl-thioethylidene]-5-\{2-[4-(3-ethylbenzoselenazolin-2-ylidene-ethylidene)-5-oxo-3-methylthiazolidin-2-yl-idene]-1-ethylthioethylidene\}thiazolid-4-one (XII) was obtained in 73% yield and formed dark, bronze threads, m. p. 260°, from pyridine-ethanol (Found : C, $47.95 ; \mathrm{H}, 4.35 ; \mathrm{N}, 6.0 ; \mathrm{S}, 20.5$. $\mathrm{C}_{3} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{~S}_{6}$ Se requires $\mathrm{C}, 48 \cdot 1 ; \mathrm{H}, 4.35 ; \mathrm{N}, 6.05 ; \mathrm{S}, 20.8 \%$), $\lambda_{\text {max. }} 832 \mathrm{~m} \mu$ in pyridine.

3-Ethoxycarbonylmethyl-5-\{2-[4-(3-ethylthiazolidin-2-ylidene-ethylidene)-5-oxo-3-methylthiazol-idin-2-ylidene]-1-ethylthioethylidene $\}$-2-[2-ethylthio-2-(2-ethylthio-5-oxothiazolin-4-ylidene)ethyl-idene]thiazolid-4-one ($\mathrm{XI} ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{SEt}$) obtained in 62% yield formed flat, golden needles, m. p. 243°, from pyridine-ethanol (Found : $\mathrm{N}, 7 \cdot 35$; S, 29.05. $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{~N}_{4} \mathrm{~S}_{7}$ requires $\mathrm{N}, 7 \cdot 25$; $\mathrm{S}, 29.1 \%$), $\lambda_{\text {max. }} 782 \mathrm{~m} \mu$ in pyridine.

3-Ethoxycarbonylmethyl-2-[2-ethoxy-2-(2-ethylthio-5-oxothiazolin-4-ylidene)ethylidene]-5-\{2-4-(3-ethylthiazolidin-2-ylidene-ethylidene)-5-oxo-3-methylthiazolidin-2-ylidene]-1-ethylthioethylidene\}-thiazolid-4-one ($\mathrm{XI} ; \mathrm{R}=\mathrm{SEt}, \mathrm{R}^{\prime}=\mathrm{OEt}$), obtained in $\mathbf{8 7 . 5} \%$ yield, formed tiny golden flakes, m. p. 228°, after recrystallization from benzene, then from pyridine-ethanol (Found : $\mathrm{N}, \mathbf{7 . 3}$; $\mathrm{S}, 25 \cdot 3 . \mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{~N}_{4} \mathrm{~S}_{6}$ requires $\mathrm{N}, 7 \cdot 45 ; \mathrm{S}, 25 \cdot 5 \%$), $\lambda_{\text {max. }} 744 \mathrm{~m} \mu$ in pyridine.

Research Laboratories, Kodak Limited, Harrow, Middlesex.

[^0]: 3－Ethylbenzoxazolin－．．．．．．．．．．．．．．．
 3－Ethyl－4 ：5－diphenyloxazolin
 3－diphenylthiazolin

